First Curb-to-Curb Permeable Street in Bay Area Outperforms Expectations
by Brad Causey
(originally published in Interlock Design Spring 2016 issue)
The morning after an overnight rainstorm, Tom Sweet, AECOM senior engineer, walks two blocks from the Downtown Berkeley BART station and puts on his yellow safety vest to inspect the Allston Way permeable paver street he helped design. “How’s the ride?” he asks a passing skateboarder, who gives a thumb’s up in response. Local residents approach from the adjacent park, ask if he’s involved with the new street and tell him how beautiful it is. When he explains the street can also infiltrate stormwater, filter pollutants, reduce runoff to San Francisco Bay and improve the health of the park’s trees, they ask, “Why aren’t all streets like this?”
Facing an aging infrastructure as are many cities today, the City of Berkeley sought a durable alternative to its existing asphalt road surfaces in need of replacement. Situated on a hill that slopes down to San Francisco Bay, mitigating stormwater runoff also ranked highly among its priorities. A public works commission began extensive research into green infrastructure redevelopment options and called in David Hein, P. Eng., Vice President of Transportation with Applied Research Associates, Inc. (ARA).
Photo 1 caption: Allston Way in Berkeley, CA, is the first curb-to-curb PICP street in the Bay Area. Credit: David Hein, ARA
“The City had wanted to do this for a long time,” said Mr. Hein, referring to the City Council’s desire to construct a green roadway using a permeable paver system as a demonstration project. A 40-year life-cycle cost analysis showed permeable interlocking concrete pavement to be almost the same cost (less than 2% difference) as an impermeable flexible pavement. However, the analysis did not take into account the benefits from permeable pavements such as reducing stormwater runoff volume, peak flows and pollutant loads. If these cost factors were taken into account in the LCCA, the permeable pavement would have the lowest total present worth cost, according to Mr. Hein.
Photo 2 caption: An 8-in. plastic cellular confinement layer in the subbase provided the structural support for bus traffic while at the same time reducing the necessary excavation depth by a full foot from the initial design. Credit: Tom Sweet, AECOM
Suitability Evaluation
With numerous sites proposed by the City for the PICP demonstration street, an evaluation matrix created by ARA for this project determined the best choice. The suitability design matrix identifies key factors that may influence design and effectiveness for a specific project, categorizes those factors as primary or secondary considerations and assigns weighted values on a scale of 0-100. If the score totals less than 65, the project is not considered a good candidate for permeable pavement. Scores between 65 and 75 are worthy of consideration, but scores over 75 indicate a well-suited site. A section of Allston Way received a high evaluation with a score of 81.
However, there were a number of initial concerns expressed about the project. The cycling and skateboarding communities weren’t sold on a segmental road surface for the heavily trafficked bike route of Allston Way. City engineers had concerns about the utilities below the street and the depth of excavation required for a properly installed PICP system as well as the suitability of Berkeley’s clay soil for infiltration. City arborists made specific requests for care and caution in excavation around tree roots. And a small time window for construction to coincide with the adjacent high school’s summer break added another challenge. To address these concerns and requirements, the initial design underwent some innovative refinement.
Refined Design
“We had a fairly deep section proposed,” explained Mr. Sweet. “Over the course of the design, as a cost-benefit, we looked into making the section thinner from a pragmatic approach.” And that’s when flexible HDPE cellular confinement for the aggregate base entered the picture. From an initially proposed depth of 41 in., the addition of an 8 in. cellular confinement layer provided enough structural stability and strength to reduce excavation to 29 in. It shaved a full foot off the excavation depth requirement, thus saving time, reducing the cost of off-haul as well as emissions and minimizing risk to the underlying utilities.
A few more innovations addressed concerns about clay soil infiltration and the street’s nearly 3% longitudinal slope. Eleven check dams were specified, but the flexible design permitted non-uniform placement at the most logical locations, i.e., where the sections had been excavated to full depth and around the existing utilities. “We didn’t want all the water to go to one end and oversaturate the subsoils, so we were very careful in the detailing to segregate the water,” Mr. Sweet said.
Additionally, the underdrain was raised up 6 in. from the subbase to take advantage of some detention and infiltration over clay soil. “It’s an opportunity that most projects miss,” explained Mr. Sweet. “A lot of folks in the profession say, ‘It’s clay soil, we can’t infiltrate.’ In fact, you can infiltrate, you just need to be more careful with how you do it and where you do it.” The sizes of the openings in the underdrain were carefully considered. “We wanted to recover but we didn’t want it to act as a conveyance,” said Mr. Sweet. The underdrains buffer the rate of flow leaving each check dam. Though the water level might reach the holes in the perforated pipe, limiting the number and the opening size allows water to go higher. Designed for a 48-hour drawdown, the underdrain system is a water recovery mechanism, not an instantaneous outflow. “Personally, I am very excited about this system. I think it’s almost the highlight of the project,” said Mr. Sweet.
Breaking New Ground
Construction of the project took place during the summer of 2014. The curb-to-curb pavement surface area totaled 29,145 sf (2,700 m²). Don Irby, P.E., Associate Civil Engineer with the City of Berkeley Public Works Department, managed the construction from beginning to end. This was Mr. Irby’s first permeable paver project. “We had to close the road for almost three months because it’s just not really economical to do this type of installation in sections,” Mr. Irby said. “That played into our location selection because we had to look at driveway access. There are a lot of things you need to take into account when you site one of these projects.”
Ghilotti Construction Co. managed the road closure as the general contractor for the project and handled the careful excavation around utilities and tree roots.
European Paving Designs Inc. (EPD), an ICPI-certified installer, installed the pavers. “As soon as we saw the tight spec for this project, we were really motivated to get the job,” said EPD CEO Randy Hays. “[The specification] referenced ICPI’s PICP manual. We knew we had the expertise and experience to make it successful.”
Photo 3 and 4 caption: Once the paver field installation was finished, the EPD crew cut out the stripe sections and replaced with yellow pavers. Credit: David Hein, ARA
With a seven-man crew working in two phases, the blend of reddish orange-and-charcoal pavers was installed in a herringbone pattern before installing pavers for striping. “That seems to work the best,” Mr. Hays said. “It allows for some give and take with the location of the stripes, so if we have to shift it an inch for alignment, as long as there are no small pieces, that’s the right way to do it.” Yellow-pigmented pavers provided contrast with the darker pavers, all supplied by Pavestone Company. The EPD crew laid out the pavers for the stripes, cut the sections out from the installed field and then inserted the yellow pavers. Mr. Hays said his foremen recall people first seeing the completed installation while they were doing cleanup work. “They were looking down as they crossed the street and said, ‘Wow, that’s unique.’”
Photo 5 caption: The section of Allston Way between Milvia St. and M.L.K. Jr. Way was chosen for Berkeley’s PICP demonstration project location because it had the highest suitability score of all the candidate sites evaluated. Credit: David Hein, ARA
Manuals for Labor
As part of their involvement on the project, ARA created two manuals for use by the City of Berkeley. One established a maintenance plan and the other specific maintenance procedures. Mr. Hein explained, “Ultimately, the purpose of ICPI is to provide guidance to people on the use of paver products. If you handle them, here’s how you do it right. I think the Utility Cut Manual and the Maintenance Guidelines are very important.” Each manual’s appendix includes ICPI Tech Spec 6 — Reinstatement of Interlocking Concrete Pavements.
Results Exceed Expectations
In the year and a half since the Allston Way project’s completion, it has been routinely and closely monitored. “The system has exceeded expectations with regard to stormwater management,” said Mr. Irby. “The infiltration rate that we’re seeing is better than we had estimated.” He added, “We haven’t published the data yet, but what we’ve gathered to date does show that the pollutant levels have been reduced.”
“The most recent storm we monitored was 1.75 in. over 19 hours, a fairly large storm for California,” said Mr. Sweet. “And we attenuated 94% of the runoff. We did readings off the discharge pipe and it really shows the benefit of spreading the water out and letting it infiltrate at a comfortable rate, to the extent that it can.”
Additionally, the City Forestry Department is monitoring the health of trees in the adjacent park to see if there is noticeable improvement. The trees are photographed on a regular basis for analysis, but this study will require a good deal of time before results become apparent.
“There was a lot of concern about the roughness of the surface from the cycling community, but I haven’t heard a word from them since it was installed,” said Mr. Irby. “And we see hundreds of bikes on the street every day, and skateboarders too. It’s an incredibly smooth surface.” That smooth surface is due to EPD’s expert installation of the ADA-compliant pavers specified, which feature a quarter-inch joint and interlocking spacer bars. In fact, the permeable paver surface is likely safer for cyclists to traverse in wet conditions because it prevents standing water from collecting of the pavement surface. “The coefficient of friction for a permeable paver surface is better than most asphalt roads,” Mr. Irby explained. “There are lots of benefits that people aren’t really aware of.”
The Intangibles
“The arc of this project was very gratifying,” Mr. Sweet said. Given the initial concerns expressed by the City and the community, “Everyone landed in the same place saying, ‘Wow, this project is worthwhile, it’s interesting, it’s the right thing, and it turned out great.’”
“I’m happy I got to be a part of this project,” Mr. Irby said. “I have coworkers who go out of their way just to walk by that street because it’s really nice to look at.”
“The City of Berkeley is really committed to the environmental aspects of construction,” Mr. Hays said. “Sustainability in the construction industry, especially with regard to water conservation, is very important. Building streets that actually return water to an underground system is a pretty cool thing.”
As for the question “Why aren’t all streets like this?” That answer may just be a matter of time.